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1. Introduction

Awidely usedmethodology for studying the electronic structures ofmolecules and solids is to solve
the Kohn–Sham problem [1], which can be formulated as either a constrained minimization problem
or a nonlinear eigenvalue problem. The objective function to be minimized is the Kohn–Sham total
energy functional expressed by

EKStotal = 1

2

ne∑

i=1

∫

Ω
|∇ψi(r)|2dr +

∫

Ω
ρ(r)Vion(r)dr + 1

2

∫

Ω

∫

Ω

ρ(r)ρ(r′)
|r − r′| drdr′ + Exc(ρ), (1)

whereψi (i = 1, 2, . . ., ne) are called the single-particlewavefunctions that satisfy the orthonormality
constraint

∫
Ω ψ∗

i ψj = δi,j , ne corresponds to the number of electrons in the system and Ω ⊂ R3. The

charge density ρ(r), which gives the probability density of finding an electron at r ∈ R3 is defined by

ρ(r) =
ne∑

i=1

ψ∗
i (r)ψi(r). (2)
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The function Vion(r) = ∑nu
j=1 zj/|r − r̂j| represents the ionic potential induced by nu nuclei with

positive charges zj (j = 1, 2, . . ., nu), and Exc(ρ) is known as the exchange–correlation energy, which
accounts for the many-body effects of the electrons [2].

For the purpose of this paper, we are not concerned with the analytic expression of Exc(ρ) other
than the assumption that Exc depends only on ρ . This assumption is based on what is known as the
local density approximation (LDA) [1].

It is not difficult to show that the first order necessary condition (Euler–Lagrange equation) for the
constrained minimization problem

min EKStotal({ψi})
{ψi}
s.t ψ∗

i ψj = δi,j

(3)

has the form

H(ρ)ψi = λiψi, i = 1, 2, . . ., ne, (4)

ψ∗
i ψj = δi,j. (5)

where the single-particle Hamiltonian H(ρ) (also known as the Kohn–Sham Hamiltonian) is defined
by

H(ρ) = −1

2
& + Vion(r) +

∫

Ω

ρ(r)

|r − r′|dr
′ + Vxc(ρ(r)). (6)

The function Vxc(ρ) in (6) is the functional derivative of Exc(ρ) with respect to ρ . The ionic potential
Vion can be replaced by what is called ionic pseudopotential to account for the net effect of nuclei and
inner electrons in completely filled electron orbitals [3–5]. In this case,ψi, i = 1, 2, . . ., ne, will simply
correspond to ne valence electrons. For the rest of this paper, we define

Vext(ρ(r)) = Vion(r) +
∫

Ω

ρ(r)

|r − r′|dr
′ + Vxc(ρ(r)),

and will not be concerned with the calculation details associated with each individual term
in Vext(ρ(r)).

Because the Kohn–Sham Hamiltonian is a function of ρ , which is in turn a function of {ψi}, the set
of equations defined by (4) results in a nonlinear eigenvalue problem. These equations are collectively
referred to as the Kohn–Sham equations. Interested readers can learnmore about these equations from
several sources (e.g., [6]).

In this paper, we are concerned with solving the Kohn–Sham problem for periodic systems such as
crystalline solids. These systems are characterized by periodic extensions of a unit cell in 3D, where
each unit cell contains a number of atoms. The relative positions of these atoms within the cell are
periodically extended also. As a result, both the charge density ρ(r) and the potential Vext(r) are
periodic functions. It is tempting to believe that the single particle functions {ψi} (i = 1, 2, . . ., ne)
that satisfy (4) are also periodic. But they are not. However, they have a special structure that is
characterized by what is known as the Bloch theorem [7–9]. Because of this structure, the task of
solving the Kohn–Sham problem for the entire periodic system can be reduced to that involving only
the unit cell. We will state the Bloch theorem in the next section and explain the implication of this
theorem on the spectral property of the discretized Kohn–Sham Hamiltonian using linear algebra. We
will showhow this theorem can be used to reduced the complexity of solving the Kohn–Shamproblem
for periodic systems. We will focus on one particular algorithm we developed in [10], and show that
it can be easily modified to efficiently minimize the Kohn–Sham total energy for a periodic system.
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Standard linear algebra notation is used for vectors and matrices throughout the paper. We use
Diag(v) to denote a diagonal matrix with the vector v on its diagonal. Similarly, we use diag(V) to

denote a vector that consists of the diagonal elements of the matrix V . If A(k), k = 0, 1, . . ., p − 1,

arem × mmatrices, then we use Diag(A(0), A(1), A(p−1)) to denote a pm × pm block diagonal matrix

that contains p diagonal blocks A(k), k = 0, 1, . . ., p − 1. We define ωk
n = ei2πk/n. If k divides n, then

ωk
n = ωn/k.

2. Bloch theorem

For simplicity, we will first restrict ourselves to a 1D Schrödinger type of operator of the form

H = d2

dr2
+ V(r), (7)

definedonanopendomainΩ = (−∞, ∞), whereV(x) is periodicwith aperiodR. TheBloch theorem
states that the eigenfunction ψ(r) of H can be expressed by

ψ(r) = eik(2π/R)ru(k)(r), (8)

where u(k)(r) is R-periodic, i.e., u(k)(r + R) = u(k)(r). To account for the k dependency of ψ(r), we
introduce a subscript k in ψ(r) and denote it by ψk(r). When Ω = (−∞, ∞), the operator defined
in (7) has a infinite number of eigenfunctions because k ∈ R. However, in practice, the open domain
is often truncated to make the task of computing the eigenpairs of H numerically tractable. One way
to restrict the domain is to impose an additional periodic boundary condition of the form

ψ(r) = ψ(r + pR), (9)

where p > 0 is an integer. The boundary condition defined by (9) is often known as the Born–von
Karman boundary condition [8].

It is a simple exercise to show that (8) and (9) imply that the allowed k values in (8) must satisfy

k = k̃

p
, (10)

where k̃ is an integer. Furthermore, because u(k)(r) is periodic, we only need to consider k̃ in the
interval [0, p − 1]. The values of 2πk/R, where k is defined by (10) are often referred to as k-points in
solid state physics. The interval [0, 2π/R) is known as the first Brillouin Zone (BZ). (The choice of a BZ
is not unique. For example, [−π/R, π/R) is also a valid BZ.) Clearly, the number of allowed k-points
depends on the value of p.

The distance between two adjacent k-points depends on both p and R. As p approaches infinity
(which is referred to as the bulk limit in solid-state physics), the set of k-points forms a continuum in
[0, 2π/R). When R (which is referred to as the unit cell size in solid-state physics) is sufficient large,
2π/R becomes very small so that the variation among different k-points is negligible. In this case, it
is sufficient to consider one k-point (e.g., the one associated with k = 0) when eigenpairs of H are
computed.

The standard proof of the Bloch theorem utilizes the fact that H commutes with the translation
operator T defined as

T f = f (r − R),

for any function f [8,9]. In the following, we present a simpler interpretation of the theorem using
matrix notation. This interpretation is useful for analyzing the spectral properties of a finite dimension
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Fig. 1. A discretized periodic potential defined on [0, 4π) with period R = π . The number of periods shown here is p = 4 and the

number of sampling points in each unit cell is m = 9.

problem obtained from a discretization of H on a bounded domain. Unless otherwise noted, the Born–
von Karman boundary condition of the form (9) is imposed.

For simplicity, let us assume that d2/dr2 is discretized by central differences to yield a circulant
matrix of the form

T =





2 −1 −1

−1 2
. . .

. . .
. . . −1

−1 −1 2





. (11)

The unit cell [0, R) is sampled uniformly bym points rj = (j−1)R/m, j = 0, 1, . . .,m−1. As a result,
the dimension of T is n = mp, and the discretized V(r) in (7) is a diagonal matrix with a periodically
replicated vector v on its diagonal. Fig. 1 shows a discretized periodic potential function for m = 9,
p = 4 and R = π .

Because T is a circulant matrix, it can be diagonalized by the discrete Fourier transform matrix Fn,

where the (k, j)th entry is defined by Fn(j, k) = ei(2π/n)kj/
√

n, j, k = 0, 1, . . ., n − 1 [11]. With this
matrix Fn, we can decompose T as

T = FnDF
∗
n , (12)

where D is a diagonal matrix. If we denote the diagonal of D by d = diag(D), then it is well known
that d = FnTe1, i.e., the eigenvalues of T are simply the elements of the discrete Fourier transform of
the first column of T .

Using (12), we can rewrite H as

H = T + V = Fn
(
D + F∗

nVFn
)
F∗
n (13)

BecauseV is diagonal, the F∗
nVFn term in (13) is a circulantmatrix. The first columnof thismatrix can

be constructed by taking the discrete Fourier transform of the diagonal of V . Subsequent columns can
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Fig. 2. The sparsity of F∗
n VFn before and after it is permuted.

be formed by circularly shifting the first column incrementally. Furthermore, because the v = diag(V)
contains p periods of a uniformly sampled potential function, the inverse discrete Fourier transform of
v is non-zero every p points. That is, if f = F∗

n v, then eTj f *= 0 only when j = p), ) = 0, 1, . . .,m − 1.

Consequently, the matrix F∗
nVFn is sparse with m − 1 strips in the lower (and the upper) triangular

part of the matrix as shown in Fig. 2.
It is easy to verify that F∗

nVFn can be permuted into a block diagonal matrix with p diagonal blocks.
Fig. 2 depicts the resulting permuted matrix for this example. Let P be the permutation matrix that
achieves this task, i.e., P makes PTF∗

nVFnP block diagonal. Then we can rewrite (7) as

H = FnP
(
PTDP + PTF∗

nVFnP
)
PTF∗

n . (14)

Because D is a diagonal matrix, PTDP remains a diagonal matrix. Consequently, the matrix

G = PTDP + PTF∗
nVFnP, (15)

is also block diagonal. Because G is obtained from H through a unitary transformation FnP, computing
the eigenvalues of H is equivalent to computing the eigenvalues of each diagonal block in G.

Suppose û(k) is an eigenvector of the kth diagonal block of G, then the vector

z = FnPEkû
(k),

is an eigenvector of H, where the n × m matrix Ek = (0 · · · Im 0)T contains the m × m identity
matrix Im between rows km + 1 and (k + 1)m and zero everywhere else. That is, Ek simply picks out
columns (k − 1)m+ 1 through km of the matrix FnP. It is easy to show that FnPEk can be expressed as

FnPEk = Ωk





Fm

Fm
...

Fm





, (16)
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where Ωk = Diag
(
1, ωk

n, ω
2k
n , . . ., ω

(n−1)k
n

)
and ωn = ei2π/n. It follows that

z = FnPEkû
(k) = Ωk





Fmû
(k)

Fmû
(k)

...

Fmû
(k)





.

This is precisely what is stated in the Bloch theorem. That is, the jth element of an eigenvector z of H
can be expressed as

eTj z = ωk(j−1)
n eTj Fmû

(k), (17)

= ei2πk(j−1)/nu(k)(rj)

= ei(2π/R)(k/p)[(j−1)(pR)/n]u(k)(rj)

= ei(2π/R)k̃rj u(k)(rj)

where we have used the definition rj = (j − 1)(pR)/n, k̃ = k/p and u(k) = Fmû
(k) is periodic with

the period R.
The Bloch theorem suggests the eigenvalues of a matrix Hamiltonian that contains a periodic po-

tential with p periods can be computed by solving p smaller eigenvalue problems defined on p unit
cells. Each unit cell corresponds to anm×m diagonal block of the Gmatrix defined in (15). We denote

the kth diagonal block of G by G(k) where k = 0, 1, 2. . ., p − 1 and label the eigenvalues of G(k) by

λ
(k)
1 ! λ

(k)
2 ! · · · λ(k)

m .

The eigenvectors associated with these eigenvalues are indexed as z
(k)
1 , z

(k)
2 , …, z

(k)
m , for

k = 0, 1, . . ., p − 1. The set of eigenvalues Bj = {λ(0)
j , λ

(1)
j , . . ., λ

(p−1)
j } is said to form the jth

energy band in solid-state physics. As p approaches infinity (the bulk limit), the plot of eigenvalues in
Bj against the k points forms a continuous curve. The set of curves {Bj} giveswhat is knownas the band-
structure of the (solid) material associated with the Hamiltonian H. Fig. 3 shows the band structure of
the artificial material associated with the Hamiltonian defined by the potential shown in Fig. 1.

We should also note that the eigenvalue problems associated with different diagonal block of G
are not completely independent from each other. In particular, it follows from periodicity of V that all
diagonal blocks of the second term PTF∗

nVFnP in (15) are identical. Because they are all circulant, they

can all be diagonalized by Fm, i.e., we may express PTF∗
nVFnP as

PTF∗
nVFnP = Diag

(
F∗
mV̂Fm, F∗

mV̂Fm, . . ., F∗
mV̂Fm

)
,

where V̂ is an m × m diagonal matrix, whose diagonal elements are simply V(rj) for rj = (R/m)j,
j = 0, 1, 2, . . .,m − 1.

If the first term PTDP of ( 15) is partitioned conformally with the second term, i.e.,

PTDP = Diag
(
D(0),D(1), . . .,D(p−1)

)
,

then we can rewrite G as

G = Diag
(
F∗
mĤ

(0)Fm, F∗
mĤ

(1)Fm, . . ., F∗
mĤ

(p−1)Fm

)
(18)
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Fig. 3. The band structure eigenvalue plot for the discretized H = T + V , where the potential function V is defined as in Fig. 1.

where Ĥ(k) = FmD
(k)F∗

m + V̂ for k = 0, 1, . . ., p − 1. Again, because D(k) is diagonal, the matrix

FmD
(k)F∗

m must be circulant with its first column determined by the discrete Fourier transform of

d(k) = diag(D(k)). Because d(k) is uniformly down-sampled from every pth entry of d = FTe1, Fmd
(k)

canbeobtainedby truncating Te1 andmultiplying the off-diagonal entries by appropriate phase factors

to account for the shifting in the starting point of the subsamples contained in d(k). (See Appendix for

details.) As a result, we can rewrite Ĥ(k) as

Ĥ(k) = T̂(k) + V̂, (19)

where the m × mmatrix

T̂(k) =





2 ω−k
n ωk

n

ωk
n 2

. . .

. . .
. . . ω−k

n

ω−k
n ωk

n 2





(20)

has the same sparsity structure as that of (11), but with 1/pth of its dimension. If u(k) is an eigenvector

of H(k), it follows from (18) that u(k) = Fmû
(k).

To see more clearly how Ĥ(k)’s, k = 0, 1, 2, . . ., p − 1, are related to H, we can rewrite FnPEk as

FnPEk = Ωk





Fm

Fm
...

Fm





=





Ω̂k

ωkm
n Ω̂k

...

ω
(p−1)km
n Ω̂k





Fm =





Ω̂k

ωk
pΩ̂k

...

ω
k(p−1)
p Ω̂k





Fm

where Ω̂k = Diag
(
1, ωk

n, ω
2k
n , . . ., ω

(m−1)k
n

)
. Therefore, we have

FnP = WDiag(Fm, Fm, . . ., Fm), (21)
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Fig. 4. The eigenvectors associated with the four smallest eigenvalues of H = T + V , where the potential function V is defined as in

Fig. 1. In addition to the eigenvectors which are shown in solid curves, we also plot the periodic potential in each sub-figure using

dotted curves. The separation of different periods are marked vertical dash-dotted lines.

where

W =





Ω̂0 Ω̂1 · · · Ω̂p−1

Ω̂0 ωpΩ̂1 · · · ω
p−1
p Ω̂p−1

...
...

...
...

Ω̂0 ω
p−1
p Ω̂1 · · · ω

(p−1)2

p Ω̂p−1





. (22)

It follows from (14), (18) and (21) that

H = W





Ĥ(0)

Ĥ(1)

. . .

Ĥ(p−1)





W∗. (23)

It is easy to verify thatW , which can be permuted into a block diagonalmatrix, is unitary. Therefore,
the Bloch theorem allows us to compute the eigenpairs of H defined for a periodic system by focusing
on a number of unit cell eigenvalue problems which are much smaller in dimension compared to
the entire domain that consists of several unit cells. The Hamiltonians associated with different unit
cell eigenvalue problems differ only in their kinetic energy operators. The solutions to the unit cell
problems are ultimately coupled (modulated) by the W matrix defined by (22). Fig. 4 shows how the
four eigenvectors associated with the four smallest eigenvalues of H (which forms the first energy
band) look like.

We should point out that the exact form of the discretized kinetic energy operator T̂(k) depends
on how d2/dr is discretized. Regardless of how it is discretized, it should contain a “phase factor"
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modification that depends on k. For example, if a plane wave (or truncated Fourier series) expansion

is used to discretize d2/dr, then T̂(k) can be represented by

T̂(k) = FmDiag
(
σ

(k)
1 , σ

(k)
2 , . . ., σ (k)

m

)
F∗
m, (24)

where σ
(k)
j = |(2π/m)(j − 1)(1 + k/p)|2.

Although we have used a 1D example to illustrate the implication of the Bloch theorem, all the
results above can be easily extended to 2D and 3D problems. For a 2D or 3D problem, the discretized
kinetic energy operator has a block circulant structurewith circulantmatrix blocks. This type ofmatrix
as well as the discretized Fourier transformation matrix Fn can be represented as a Kronecker product
of lower dimensional matrices.

3. Constrained minimization for Kohn–Sham energy

It is reasonable to assume that the electron density for a periodic system is periodic at theminimum
energy state, i.e., electrons are distributed in the same way from one unit cell to another. Hence, the
Kohn–Sham Hamiltonian defined by (6) contains a periodic potential Vext(r). As a result, the solution
to the Kohn–Sham problem, which consists of a set of eigenfunctions of H(ρ), must satisfy the Bloch

theorem, i.e., each eigenfunction can be expressed by ψk(r) = eik(2π/R)ru(k)(r), where u(k)(r) is R-
periodic.

AfterH is discretized, the total number of eigenvectors associatedwith the discretizedH is n = mp,
where m is the number of degrees of freedom per unit cell introduced by the discretization (e.g.,
the number of grid points in the finite difference discretization or the number of planewaves used
in a planewave discretization) and p is the number of unit cells included in the finite dimensional

approximation. As we pointed out earlier, these eigenvectors can be labeled as z
(k)
1 , z

(k)
2 , …, z

(k)
m . Such a

double-index labelingmust be taken into account in the charge density computation described by (2).
Although it has not been rigorously proved, it is generally accepted that the charge density associated
with the minimum Kohn–Sham energy should obey the aufbau principle [12] at zero temperature, i.e.,
the ne eigenfunctions that are included in the summation (2) must be those that are associated with
the ne smallest eigenvalues of H. These eigenvalues should not be larger than what is called the Fermi
level or chemical potential denoted by εF .

It is well known in solid-state physics that for insulator and semiconductors, the smallest ne eigen-
values H tend to fill the lowest few energy bands that are separated from higher energy bands by a
measurable distance (or gap), i.e., the smallest ne eigenvalues ofH are precisely those in∪s

)=1B), where

B) = {λ(0)
) , λ

(1)
) , . . ., λ

(p−1)
) }, and ne = ps. As a result, we may rewrite (2) as

ρ =
p−1∑

k=0

s∑

)=1

|z(k)) |2 =
(
ρ̂T ρ̂T · · · ρ̂T

)T
, (25)

where ρ̂ = ∑p−1
k=0

∑s
)=1 |u(k)

) |2 andu(k)
) is theeigenvector corresponding to the)th smallest eigenvalue

of the unit cell Hamiltonian Ĥ(k) defined by (19). Note that ρ is the overall charge density associated
with the atomistic system that contains p unit cells. The expression on the right-hand side of (25)
indicates that it is periodic with p periods. Within each unit cell, the charge density is given by ρ̂ . The

phase factor ω
k(j−1)
n that appears in the jth element of the eigenvector z

(k)
) , as shown in (17), does not

enter the charge density (ρ̂) calculation because it cancels with its conjugate.
For metallic systems in which the lowest energy bandsmay be partially filled, expression (25) does

not hold in general. That is, the )th eigenvalue associated with one particular k-point may be smaller
than the )− jth eigenvalue associated with a different k-point for some integer j. However, to simplify
our discussion below, we will not be concerned with this case, and we will use (25) as the definition
of charge density.
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We should also comment that as p approaches infinity, the summation over k is replaced by inte-
gration over k ∈ Rd (d = 1,2 or 3) in the first BZ. The integration can be approximated by an appropriate
quadrature rule. In solid-state physics, efficient and accurate quadrature rules that take advantage of
crystal symmetry are oftenused [13]. Thesequadrature rules result in special k-points that are different
from the evenly space k-points that result from the use of the Born–von Karman boundary condition.

We will show in the following how the direct constrained minimization (DCM) algorithm we in-
troduced in [10,14] can be used to minimize the Kohn–Sham total energy for periodic systems. Our
objective here is not to introduce a new optimization algorithm but merely to illustrate how the Bloch
theorem is used to modify DCM so that it can be used on periodic systems.

We assume that the Kohn–Sham minimization problem (1) has been discretized. What we will
show below is applicable to different discretization schemes. However, the most natural discretiza-
tion scheme for periodic system is the planewave discretization. The finite-dimensional Kohn–Sham
minimization problem can be stated as

min
X∗X=Ine

trace(X∗H(ρ(X))X), (26)

where the finite-dimensional Kohn–Sham Hamiltonian can be written as

H(ρ(X)) = 1

2
L + Vext(ρ(X)),

and ρ(X) = diag(XX∗) is the discretized version of ρ(r) defined in (25). Here L is the matrix repre-
sentation of the discretized Laplacian or kinetic energy operator.

It follows from the discussion in the previous section that we can express a finite-dimensional
approximation to the solution of the Kohn–Sham problem defined on a periodic system by

X = FnPDiag
(
F∗
m, F∗

m, . . ., F∗
m

)
U = WU, (27)

where U = Diag
(
Û(0), Û(1), . . ., Û(p−1)

)
and Û(k) =

(
u
(k)
1 u

(k)
2 · · · u

(k)
s

)
. Here we have used the

assumption that the smallest ne eigenvalues of H fill up the lowest s energy bands and sp = ne.
The basic idea of DCM is to minimize the total energy within a sequence of subspaces spanned by

columns of

Y =
(
X(i),M−1R(i), P(i−1)

)
, (28)

whereX(i) ∈ Cn×ne is theapproximation toX obtainedat the ith iteration,R(i) =[I−X(i)(X(i))∗]H(i)X(i)

is the projected gradient of the Kohn–Sham total energy along the tangent of the orthonormality

constraint, the preconditioner M is a Hermitian positive definite preconditioner, and P(i−1) is the
search direction obtained in the previous iteration. It was shown in [10] that solving the subspace
minimization problem is equivalent to computing the eigenvectors G associated with the ne smallest
eigenvalues of the following nonlinear eigenvalue problem

H̃(G)G = BGΩ, G∗BG = I, (29)

where

H̃(G) = Y∗
[
1

2
L + V(ρ(YG))

]
Y, (30)

and B = Y∗Y . Because the dimension of H̃(G) is 3ne × 3ne, which is normally much smaller than that
of H(X), it is relatively easy to solve (29) by, for example, a trust region enabled SCF (TRSCF) iteration
[14]. We should note that it is not necessary to solve (29) to full accuracy in the early stage of the DCM
algorithm because all we need is a G that yields sufficient reduction in the objective function.
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Once G is obtained, we can update the wave function by

X(i+1) ← YG.

The search direction associated with this update is implicitly defined to be

P(i) ≡ M−1R(i)G2 + P(i−1)G3, (31)

where G2 and G3 are submatrices of the G matrix

G =





G1

G2

G3





partitionedconformallywith thepartitionofY in (28). By solving theprojectedproblem(29) iteratively,
we obtain both the search direction (31) and an appropriate step length (represented by G) to move
along this direction simultaneously.

A complete description of the constrained minimization algorithm is given in Fig. 5. We should
point out that solving the projected optimization problem in Step 8 of the algorithm requires us to

Fig. 5. A direct constrained minimization algorithm for total energy minimization.
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evaluate the projected Hamiltonian Ĥ(G) repeatedly as we search for the best G. However, since the
first term of H̃ does not depend on G, it can be computed and stored in advance. Only the second
term of (30) needs to be updated. These updates require the charge density and the potential to be
recomputed.

Wewill show next that, for periodic systems, the projected Hamiltonian defined by (30) has a block

diagonal structure, and both the projected gradient R(i) and search direction P(i) can be computed on
a number of unit cells separately.

It follows from (23) and (27) that

H(i)X(i) = WDiag
(
Ĥ(0), Ĥ(1), . . ., Ĥ(p−1)

)
W∗WU

= WDiag
(
Ĥ(0)Û(0), Ĥ(1)Û(1), . . ., Ĥ(p−1)Û(p−1)

)
.

Furthermore, since

(X(i))∗H(i)X(i) = Diag
(
,̂(0), ,̂(1), . . ., ,̂(p−1)

)
,

where ,̂(k) = (Û(k))∗Ĥ(k)Û(k), the projected gradient R(i) can be expressed by

R(i) = WDiag
(
R̂(0), R̂(1), . . ., R̂(p−1)

)
,

where R̂(k) = Ĥ(k)Û(k) − Û(k),̂(k), for k = 0, 1, . . ., p − 1.
The search direction produced in the first iteration of the DCM algorithm is simply the projected

gradient. Therefore, it has the form

P(1) = WDiag
(
P̂(0), P̂(1), . . ., P̂(p−1)

)
,

where P̂(k) is simply R̂(k). It is easy to see that this structure is preserved in subsequent DCM iterations,

i.e., P(k) can be expressed as the product ofW and a block diagonal matrix. As a result, the matrix Y in
(28) has the form

Y = WDiag
(
Ŷ (0), Ŷ (1), . . ., Ŷ (p−1)

)
,

where Ŷ (k) = (Û(k) R̂(k) P̂(k)). Consequently,

H̃ = Y∗WDiag
(
Ĥ(0), Ĥ(1), . . ., Ĥ(p−1)

)
W∗Y

= Diag
(
Γ (0), Γ (1), . . ., Γ (p−1)

)
,

where Γ (k) = (Ŷ (k))∗Ĥ(k)Ŷ (k), and the solution G to the projected nonlinear eigenvalue problem (29)
is also block diagonal, i.e.,

G = Diag
(
Ĝ(0), Ĝ(1), . . ., Ĝ(p−1)

)
,

and Ĝ(k) ∈ Cm×ne .
It follows from the above that for periodic systems that contain p unit cells, the Bloch theorem

allows us to solve the subspace minimization problem in Step 8 of the DCM algorithm by working
with p unit cells separately. These unit cells are coupled through the W matrix in the periodic charge
density ρ(YG), which can be represented by

ρ(YG) = diag(YG(YG)∗) =
(
ρ̂T ρ̂T · · · ρ̂T

)T
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where ρ̂ = ∑p−1
k=0 diag[Ŷ (k)Ĝ(k)(Ĝ(k))∗(Ŷ (k))∗]. The projected Hamiltonians Ĥ(k) defined on different

unit cells differ in their kinetic energy operator T̂() (k) which must account for a phase shift such as
that shown in (20). The same observation can be made by rewriting the objective function (26) as a
sum of traces using

trace[X∗H(ρ(X))X] = trace[(WU)∗WDiag(Ĥ(0), Ĥ(1), . . ., Ĥ(p−1))W∗WU]

=
p−1∑

k=0

trace

[
(Û(k))∗Ĥ(k)Û(k)

]
.

The orthonormality constraint X∗X = In can also be replaced by p separate orthonormality constraints

(Û(k))∗Û(k) = Im, for k = 0, 1, . . ., p − 1. Note that Ĥ(k) is a function of ρ̂ for k = 0, 2, . . ., p − 1.
In terms of algorithmic changes, we can simply modify the DCM algorithm shown in Fig. 5 by

introducing an additional loop indexed by k on unit cells inside the DCM iteration loop indexed by i.
All the underlined steps in Algorithm 1 (Fig. 5) should be placed inside this inner loop. The kth iterate

of this loop will take Ĥ(k) and Û(k) (instead of H(i) and X(i)) as input, and compute ,̂(k), R̂(k) and Ŷ (k)

for each k = 0, 1, . . .p−1. Just as in the original DCM algorithm, the subspaceminimization problem
that appears in Step 8 must be solved iteratively by using, for example, a trust-region enabled SCF
(TRSCF) iteration [14]. Because the first order necessary condition for this constrained minimization
problem yields p coupled nonlinear eigenvalue problems of form

Ĥ(k)(ρ̂)Ĝ(k) = B̂(k)Ĝ(k).̂(k), (Ĝ(k))∗B̂(k)Ĝ(k) = I, k = 0, 1, . . ., p − 1,

where B̂(k) = (Ŷ (k))∗Ŷ (k) and ρ̂ = ∑p−1
k=0 diag[Ŷ (k)Ĝ(k)(Ĝ(k))∗(Ŷ (k))∗], each TRSCF iteration will loop

over punit cells and solve p linear generalized eigenvalue problems. The eigenvectormatrices Ĝ(k)’s are
used to update ρ̂ before the next TRSCF begins. Typically, three to five TRSCF iterations are sufficient

to reduce the total energy by a large factor within the subspace spanned by columns of Ŷ (k). There is
no need to find the true minimizer of the subspace energy minimization problem when the subspace
does not contain the solution to Kohn–Sham problem.

4. Numerical example

In this section, we will give an example that illustrates the convergence of the DCM algorithm
when it is applied to a periodic system. The system we used in this example contains eight unit cells
of a Gallium(Ga)/Arsenic(As) structure. Each unit cell contains four Ga atoms and four As atoms. The
positions of these atoms are shown in Fig. 6. Each Ga atom has three valence electrons, and each As
atomhas five valence electrons. Thus the total number of valence electrons in the eight unit cell system
is ne = 8 · (4 · 3 + 4 · 5) = 256. Each unit cell is cubic with the unit cell size R = 10.6826 Bohr. The
Born–von Karman boundary condition is imposed in our calculation which implies that we use eight
evenly spaced k-points in the first BZ [0, 2π/R) × [0, 2π/R) × [0, 2π/R).

The Kohn–Sham minimization problem is discretized using a planewave discretization, i.e., each
ψi(r) is expressed as a linear combination of planewaves. The number of planewaves used in the
expansion ism = 13541, which corresponds to a kinetic energy cutoff of 30 Rydberg. As we indicated
at the end of Section 2, the use of planewave discretization does not alter the unit-cell decomposition
property of the Kohn–ShamHamiltonian shown in (23). The spectrum of the decoupled kinetic energy

operator T(k) in a 3D version of (24) is different from (and more accurate than) that obtained from

a finite difference discretization. However, both discretization schemes yield a T(k) that contains a
k-dependent “phase factor".

Weuse Troullier andMartins [15] ionic pseudopotentials in Kleinman andBylander form to account
for potential induced by Ga and As ionic cores. The preconditionerM that appears in (28) is chosen to
be the kinetic energy operator T .
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Fig. 6. A GaAs periodic system with eight unit cells. Each unit cell contains four Ga atoms and four As atoms.
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Fig. 7. The reduction in Kohn–Sham total energy in the DCM algorithm for the eight unit cell GaAs model.

Fig. 7 showshowthecomputedKohn–Shamtotal energy changes in theDCMalgorithmwith respect

to the iteration number. We plot &Ei = Eks(X
(i)) − Emin, where Ei is the total energy evaluated at the

end of the ith DCM outer iteration, Emin is the minimum total energy obtained in a separate run. Three
inner TRSCF iterations were used to solve the subspace minimization problem in Step 8 of the DCM
algorithm. This figure shows that the computed total energy in DCM decreases monotonically at a
rapid rate.

Appendix

Lemma 1. Suppose d = Fnt, where t = (2 1 0 · · · 0 − 1)T ∈ Rn, and Fn is the discrete Fourier
transform matrix
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Fn = 1√
n





1 1 1 · · · 1

1 ωn ω2
n · · · ωn−1

n

... ω2
n ω4

n · · · ω
2(n−1)
n

...
...

... · · ·
...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)(n−1)
n





,

and n = mp for some m, p ∈ Z+. If d(k), k = 0, 1, . . ., p − 1, is obtained by sampling every pth element

of d starting from the k + 1st element, then d(k) can be expressed by

d(k) = Fmt
(k),

where t(k) = (2 ωk
n 0 · · · 0 ω−k

n )T .

Proof. The jth row of d(k) can be expressed by

eTj d
(k) = eTj Fnt

=
(
1 ω(j−1)p+k

n ω2(j−1)p+2k
n · · · ω(n−1)(j−1)p+(n−1)k

n

)





2

−1

0

...

0

−1





=
(
1 ω(j−1)p

n ω2(j−1)p
n · · · ω(n−1)(j−1)p+nk

n

)

︸ ︷︷ ︸
m





2

−ωk
n

0

...

0

−ω−k
n





(32)

=
(
1 ωj−1

m ω2(j−1)
m · · · ω(m−1)(j−1)

m

)
t(k).

Note that in (32), we reduced the lengths of both the row and column vectors to m, and modified

elements 3 through m − 1 in the row vector by setting them to ω
2(j−1)p
n , ω

3(j−1)p
n , …, ω

(n−2)(j−1)p
n .

Such a modification does not change the product of these two vectors because the corresponding

elements in the column vector are zeros. Since the vector (1 ω
j−1
m ω

2(j−1)
m · · · ω

(m−1)(j−1)
m ) forms

the jth row of Fm, for j = 1, 2, . . .,m, it follows that d(k) = Fmt
(k), and ne = sp. "
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